A Stimulating Presentation: Reviewing Consequences and Treatments of Methamphetamine Use Kevin Masterson, M.D. # PRESENTATION OUTLINE - History of stimulants in the United States - Methamphetamine basics and neuropsychiatric consequences - 3. Available treatments ## HISTORY OF STIMULANTS ## HISTORY OF STIMULANTS ## AMPHETAMINE RELATED HOSPITALIZATIONS(38) ## AMPHETAMINE RELATED HOSPITALIZATIONS (38) ## COLORADO DEATHS (13) ## Illicit Drug Use: Marijuana Most Used Drug # PRESENTATION OUTLINE - History of stimulants in the United States - 2. Methamphetamine basics and neuropsychiatric consequences - 3. Available treatments #### METHAMPHETAMINE BASICS - Dopamine, Norepinephrine, Serotonin Activation. Affects salience and reward circuit of brain. (5,24, 34) - Blocks dopamine transporter (DAT) <u>AND</u> increases dopamine release - Half life 12 hours (24, 29) - More lipophilic than amphetamine: cross BBB (24) - Route of ingestion matters (24) - Smoke inhalation: 6-8 seconds - IV use: 10-15 seconds - Intranasal: 3-5 minutes - Oral: peak level 3 hours ### METHAMPHETAMINE BASICS https://www.youtube.com/watch?time_continue=50&v=TTMNXzL4O4s (21) #### INTOXICATION (4) #### WITHDRAWAL (4) - Euphoria - Increased energy/alertness - Decreased appetite - Increased psychomotor activity, skin picking, teeth grinding - Delusions, Hallucinations - Increased Autonomic Signs - Increased risk taking: hypersexuality, agitation - Dysphoria, anhedonia - Fatigue - Increased appetite - Slowed psychomotor activity ## NEUROPSYCHIATRIC HEALTH CONSEQUENCES - Acute: sustained sympathetic activation (29) - Strokes, seizures, hyperthermia - Psychosis related to dopamine increase - Chronic: sustained/repeated monoamine release (29) - High dopamine + hyperthermia= neurotoxic nerve terminal damage - Fine motor movements deficit (11) - Impairments in neuropsychological testing: most notably verbal learning, <u>executive</u> <u>function, episodic memory</u> (28, 36) ## Dopamine Transporter (DAT) Recovery PET scan using dopamine transporter radioligand - Meth toxicity leads to less DAT (40 yrs aging) and lowered metabolism in some regions of the brain (22, 37) - DAT and metabolism can recover with protracted abstinence (22, 36, 37) - Neuropsychological function recovery variable depending on study. Thalamus metabolism perhaps related to improved verbal memory and motor tasks. (36, 37) # PRESENTATION OUTLINE - History of stimulants in the United States - Methamphetamine basics and neuropsychiatric consequences - 3. Available treatments #### MEDICATIONS RESEARCHED FOR METHAMPHETAMINE USE (3, 12,17, 20) - Replacement therapy (methylphenidate, dextroamphetamine, modafinil) - BUPROPION (9, 31) - Partial D2 agonist (aripiprazole) - D2 antagonists (quetiapine, risperidone) - GABA agents (baclofen, gabapentin, vigabatrin) - Imipramine - Ondansetron - Food supplements (creatinine, citicoline) - Cholinesterase Inhibitors (donepezil, rivastigmine) - SSRI (fluoxetine, paroxetine, SERTRALINE) (32) - MIRTAZAPINE (12, 17) - NALTREXONE/VIVITROL (7, 14, 15, 16) - N-acetylcysteine - Topiramate - Calcium Channel blockers (amlodipine, israpidine) # PSYCHOTHERAPIES - Most of the drug treatment studies utilized some version of CBT based therapy, often in group format. - Mostly 3 month duration, some 6 month - MATRIX model (26,27) - Combines individual therapy, CBT group therapy, family education groups, drug testing, 12 step meetings, relapse prevention therapy, social support therapy. - Contingency Management (23,33) - Incorporates structure for monetary/prize earnings into component of treatment plan such as UDS. ## TAKE HOME POINTS - Methamphetamine use never went away and has been worsening. - Methamphetamine use results in neurotoxic damage and cognitive impairments, although some potential for recovery. - No FDA approved medications. Therapy is most important intervention at this time but need to prioritize keeping patients engaged since that correlates with clinical improvement. ## Questions? Thanks to the ECHO team! - 1. Anglin, M. D., et al. (2000). "History of the methamphetamine problem." J Psychoactive Drugs 32(2): 137-141. - 2. Artigiani, E.E., Hsu, M.H., McCandlish, D., and Wish, E.D. (2018). Methamphetamine: A Regional Drug Crisis. College Park, MD: National Drug Early Warning System. - 3. Ballester, J., et al. (2017). "Pharmacological treatments for methamphetamine addiction: current status and future directions." Expert Rev Clin Pharmacol 10(3): 305-314. - 4. Boyer, E., Seifert, S., & Hernon, C. (2017). Methamphetamine: Acute Intoxication. In J. Grayzel (Ed.), *Uptodate*. Retrieved March 13th, 2019, from https://www-uptodate-com.proxy.medlib.uits.iu.edu/contents/methamphetamine-acute-intoxication - 5. Chiu, V. M. and J. O. Schenk (2012). "Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system." Curr Drug Abuse Rev 5(3): 227-242. - 6. Chomchai, C. and S. Chomchai (2015). "Global patterns of methamphetamine use." Curr Opin Psychiatry 28(4): 269-274. - 7. Coffin, P. O., et al. (2018). "Extended-release naltrexone for methamphetamine dependence among men who have sex with men: a randomized placebo-controlled trial." Addiction 113(2): 268-278. - 8. Cohen PA, Goday A, Swann JP. The return of rainbow diet pills. Am J Public Health. 2012;102(9):1676-86. - 9. Elkashef, A. M., et al. (2008). "Bupropion for the treatment of methamphetamine dependence." Neuropsychopharmacology 33(5): 1162-1170. - 10. Gonzales, R., et al. (2010). "The methamphetamine problem in the United States." Annu Rev Public Health 31: 385-398. - 11. Grahn, J. A., et al. (2008). "The cognitive functions of the caudate nucleus." Prog Neurobiol 86(3): 141-155. - 12. Hartel-Petri R, Krampe-Scheidler A, Braunwarth WD, Havemann-Reinecke U, Jeschke P, Looser W, et al. Evidence-Based Guidelines for the Pharmacologic Management of Methamphetamine Dependence, Relapse Prevention, Chronic Methamphetamine-Related, and Comorbid Psychiatric Disorders in Post-Acute Settings. Pharmacopsychiatry. 2017;50(3):96-104. - 13. Ingold, J. (2018, April 4th). *More Coloradans died last year from drug overdoses than any year in the state's history. That shows how the opioid epidemic is changing.* Retrieved from https://www.denverpost.com/2018/04/04/colorado-drug-overdoses-opioid-deaths-hit-high/ - 14. Jayaram-Lindstrom, N., et al. (2008). "Naltrexone for the treatment of amphetamine dependence: a randomized, placebocontrolled trial." Am J Psychiatry 165(11): 1442-1448. - 15. Jayaram-Lindstrom, N., et al. (2008). "Naltrexone attenuates the subjective effects of amphetamine in patients with amphetamine dependence." Neuropsychopharmacology 33(8): 1856-1863. - 16. Jayaram-Lindstrom, N., et al. (2005). "An open clinical trial of naltrexone for amphetamine dependence: compliance and tolerability." Nord J Psychiatry 59(3): 167-171. - 17. Karila, L., et al. (2010). "Pharmacological approaches to methamphetamine dependence: a focused review." Br J Clin Pharmacol 69(6): 578-592. - 18. Maxwell, J. C. and M. L. Brecht (2011). "Methamphetamine: here we go again?" Addict Behav 36(12): 1168-1173. - 19. McElhiney, M. C., et al. (2009). "Provigil (modafinil) plus cognitive behavioral therapy for methamphetamine use in HIV+ gay men: a pilot study." Am J Drug Alcohol Abuse 35(1): 34-37. - 20. Morley, K. C., et al. (2017). "Pharmacotherapeutic agents in the treatment of methamphetamine dependence." Expert Opin Investig Drugs 26(5): 563-578. - 21. National Institute on Drug Abuse. (2016, February 8). *The Reward Circuit: How the Brain Responds to Methamphetamine*. Retrieved from https://www.youtube.com/watch?time_continue=50&v=TTMNXzL4O4s - 22. NIDA. (2013, September 19). Methamphetamine. Retrieved from https://www.drugabuse.gov/publications/research-reports/methamphetamine on 2019, April 22 - 23. Petry, N. M., et al. (2005). "Effect of prize-based incentives on outcomes in stimulant abusers in outpatient psychosocial treatment programs: a national drug abuse treatment clinical trials network study." Arch Gen Psychiatry 62(10): 1148-1156. - 24. Radfar, S. R. and R. A. Rawson (2014). "Current research on methamphetamine: epidemiology, medical and psychiatric effects, treatment, and harm reduction efforts." Addict Health 6(3-4): 146-154. - 25. Rasmussen N. America's first amphetamine epidemic 1929-1971: a quantitative and qualitative retrospective with implications for the present. Am J Public Health. 2008;98(6):974-85. - 26. Rawson, R. A., et al. (2004). "A multi-site comparison of psychosocial approaches for the treatment of methamphetamine dependence." Addiction 99(6): 708-717. - 27. Rawson, R. A., et al. (1995). "An intensive outpatient approach for cocaine abuse treatment. The Matrix model." J Subst Abuse Treat 12(2): 117-127. - 28. Rippeth, J. D., et al. (2004). "Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons." J Int Neuropsychol Soc 10(1): 1-14. - 29. Rusyniak, D. E. (2011). "Neurologic manifestations of chronic methamphetamine abuse." Neurol Clin 29(3): 641-655. - 30. Shearer, J., et al. (2009). "A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence." Addiction 104(2): 224-233. - 31. Shoptaw, S., et al. (2008). "Randomized, placebo-controlled trial of bupropion for the treatment of methamphetamine dependence." Drug Alcohol Depend 96(3): 222-232. - 32. Shoptaw, S., et al. (2006). "Randomized, placebo-controlled trial of sertraline and contingency management for the treatment of methamphetamine dependence." Drug Alcohol Depend 85(1): 12-18. - 33. Shoptaw, S., et al. (2006). "A public health response to the methamphetamine epidemic: the implementation of contingency management to treat methamphetamine dependence." BMC Public Health 6: 214. - 34. Szumlinski, K. K., et al. (2017). "Methamphetamine Addiction Vulnerability: The Glutamate, the Bad, and the Ugly." Biol Psychiatry 81(11): 959-970. - 35. United States Department of Health and Human Services. Substance Abuse and Mental Health Services Administration. Center for Behavioral Health Statistics and Quality. National Survey on Drug Use and Health, 2017. Research Triangle Park, NC: RTI International [distributor]. https://www.samhsa.gov/data/sites/default/files/nsduh-ppt-09-2018.pdf - 36. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci. 2001;21(23):9414-8. - 37. Wang GJ, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R, et al. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry. 2004;161(2):242-8. - 38. Winkelman TNA, Admon LK, Jennings L, Shippee ND, Richardson CR, Bart G. Evaluation of Amphetamine-Related Hospitalizations and Associated Clinical Outcomes and Costs in the United States. JAMA Netw Open. 2018;1(6):e183758. #### **FUTURE CONSIDERATIONS** - Continue to develop potential medications. - Medication combinations? - Therapy combinations? - Duration of treatment should be in line with neuroscience understanding - Bupropion 150mg SR BID - N=151, 12 week double blind placebo controlled with 1 month f/u, Decrease in meth positive urines 10% in MALE low-moderate users (used 18 or less days/month) (9) - Lack of inter-rater reliability, high drop out rate - Bupropion 150mg SR BID - N=73, 12 week randomized double blind placebo controlled, Decrease in methamphetamine and reported cigarette use (28) - High dropout rate Naltrexone 50mg PO daily Vivitrol 380mg IM monthly (7) - Mirtazapine (12, 16) - 2 studies showing no effect on use - Decrease in risky sexual behaviors as well as extent of methamphetamine use - Sertraline 50mg BID (29) - N=229, 12 week double blind placebo controlled trial looking at combinations of sertraline with Contingency Management, showed sertraline having adverse affect on retention rate and methamphetamine abstinence. # MATRIX Model - Original model 6 months with 6 weeks 12 step group follow up. Superior to inpatient hospitalization or 12 step alone. (27) - MATRIX model vs TAU (26) - 8 multi-site comparison, 16 week duration, N=978 - 38% more likely to stay in treatment, 31% more likely to have drug free urine during treatment - About 40% completion rate in MATRIX group - No difference in chance of neg UDS at final meeting or 6 month f/u (66% vs 69%). - No difference in change in decrease of number days using meth in past month (11 down to 4). This persisted at 6 month f/u. #### **CONTINGENCY MANAGEMENT** - N=111, 12 week meeting x3/week, steady increase credits for UDS (33) - Cost per patient \$800, average 42% drug free urine samples - 60% completed 4 weeks, 30% completed 12 weeks - No therapy component - N=415, 12 week 2 group comparison (CM, non-CM), UDS x2/week, lottery based system (2) - No difference from placebo group for average clean urine samples - 49% CM group completed 12 weeks, 35% non-CM group - Had group therapy component